From One Thousand Pages of Specification to Unveiling Hidden Bugs:
Large Language Model Assisted Fuzzing of Matter IoT Devices

Xiaoyue Ma
George Mason University

Abstract

Matter is an IoT connectivity standard backed by over two
hundred companies. Since the release of its specification in
October 2022, numerous [oT devices have become Matter-
compatible. Identifying bugs and vulnerabilities in Matter
devices is thus an emerging important problem. This paper
introduces mGPTFuzz, the first Matter fuzzer in the literature.
Our approach harnesses the extensive and detailed informa-
tion within the Matter specification to guide the generation of
test inputs. However, due to the sheer volume of the Matter
specification, surpassing one thousand pages, manually con-
verting human-readable content to machine-readable informa-
tion is tedious, time-consuming and error-prone. To overcome
this challenge, we leverage a large language model to success-
fully automate the conversion process. mGPTFuzz conducts
stateful analysis, which generates message sequences to un-
cover bugs that would be challenging to discover otherwise.
The evaluation involves 23 various Matter devices and discov-
ers 147 new bugs, with three CVEs assigned. In comparison, a
state-of-the-art IoT fuzzer finds zero bugs from these devices.

1 Introduction

Matter is an open, royalty-free IoT connectivity standard,
which is endorsed by over two hundred companies, including
Apple, Google, Amazon, and Samsung [6]. It aims to establish
a unified standard [66], facilitating interoperability among
smart devices of different vendors. With the support of many
large technology companies, this unified standard is expected
to completely change the IoT ecology [59].

Since the release of the Matter specification in October
2022, Amazon has turned 100 million Echo devices to be
Matter-compatible through a software update [4]. Google
has updated billions of smart devices to support Matter [58].
Apple TV and HomePod devices extend support for Matter
through the installation of iOS 16.1 [28]. Given the popularity,
discovering bugs and vulnerabilities in Matter devices is an
emerging important problem.

Lannan Luo
George Mason University

Qiang Zeng
George Mason University

To find IoT bugs, significant efforts have been dedicated
to emulating IoT firmware to facilitate greybox or white-
box fuzzing [11,16,37,76,77]. Nevertheless, emulating IoT
firmware remains challenging due to the extensive array of
custom and proprietary hardware components. Constructing
a precise emulator is complex and difficult [51,69]. Conse-
quently, blackbox fuzzing emerges as an attractive option and
has demonstrated noteworthy results [12,22,35,51].

To conduct blackbox fuzzing for Matter, our observation is
that the Matter specification contains extensive and detailed
information regarding the device behaviors, such as the valid
and invalid values for each parameter in a command, the ex-
pected effect, and the response message after a command
is executed. It is a promising approach to make use of the
rich information in a specification for test input generation.
To build this approach to Matter fuzzing, however, multiple
challenges arise.

Challenge 1 (C1): Sheer volume of specification. The Mat-
ter specification describes a unified connection standard that
facilitates interoperability of various devices across vendors.
It is not surprising that the specification contains thorough
details, contained in 1,258 pages. Manually converting the
large amount of human-readable content to machine-readable
information is tedious, time-consuming and error-prone.

Challenge 2 (C2): Stateful bugs. Many IoT commands only
make sense when the device is at a specific state. For example,
a command turning off a light has an effect only when the
light is on. A bug that can only be triggered when the device
is at a certain state is called a stateful bug [7]. Prior IoT
blackbox fuzzers, such as ToTFuzzer [12] and SNIPUZZ [22],
usually ignore the impact of device states for bug finding.
How to obtain the complete state space of IoT devices in the
application layer is not studied in prior work.

Challenge 3 (C3): Non-crash bugs. One well-known diffi-
culty in IoT fuzzing is that, in general, one cannot modify the
firmware and then install the altered firmware onto the device,
as most 0T devices enforce code-signature checking [31].
Thus, it is infeasible to collect the program execution informa-

tion inside a device, such as branch coverage, path conditions,
and function return values. While existing fuzzers use side
channels, e.g., network connection, to infer whether a test
input has triggered a crash bug, how to discover non-crash
bugs, such as logic errors [9], is a known challenge.

Challenge 4 (C4): Command coverage. Ideally, a fuzzer
should test all the commands of a device. However, manually
comprehending the user manual of a device to derive the list
of commands tends to be imprecise and unscalable. Prior
work, SNIPUZZ [22], collects testing scripts disclosed by IoT
vendors, but they are incomplete and very few vendors provide
them (detailed in Section 4.3).

Our work has overcome all the challenges and built the
first Matter fuzzer, named mGPTFuzz, in the open literature.
To address C1 and C2, we employ a large language model
(LLM) to transform human-readable content in the speci-
fication to machine-readable information. Furthermore, the
machine-readable information, including the device states,
commands and their relations, is represented in finite-state
machines (FSMs), where each node represents a device state
and each edge a transition due to command execution. By iter-
ating over the FSMs, our fuzzer performs systematic stateful
analysis, effectively identifying stateful bugs.

To handle C3, we propose to leverage command semantics.
For instance, if the execution of a command is expected to
modify specific device attributes as per the specification, our
fuzzer queries the corresponding attributes. On the other hand,
if a command is meant to be rejected, an error message is ex-
pected. Precise extraction of semantic information concerning
commands ensures the efficacy of this method.

Finally, to tackle C4, we are inspired by prior work,
HubFuzzer [35], which makes use of an IoT hub to test
ZigBee/Z-Wave devices. Our observation is that there is a
special role in Matter, controller, which can add (formally,
commission), manage and control Matter devices. Notably,
while the certificate of an ordinary Matter device undergoes
stringent verification by the controller, a Matter device does
not verify the controller equally. Consequently, even an uncer-
tified vendor can create a controller [48]. We thus propose to
build our fuzzer within a controller. According to the specifi-
cation, when a controller adds a device, the device declares all
supported commands. Without relying on the device’s man-
ual or testing scripts, our fuzzer can extract the supported
commands of a device under test from pairing messages.

We implement nGPTFuzz' and conduct an extensive eval-
uation, which involves 23 various Matter devices. It has re-
vealed 147 new bugs (61 zero-day vulnerabilities), including
5 crash bugs and 142 non-crash bugs. Three CVEs have been
assigned: CVE-2023-42189, CVE-2023-45955, CVE-2023-
45956. In comparison, a state-of-the-art blackbox fuzzer,
SNIPUZZ [22], finds zero bugs from these devices.

mGPTFuzz can be used by IoT vendors that cannot afford a

Uhttps:/fiot-fuzz.github.io

security testing team, third-party security analysts, as well as
companies and organizations seeking to assess the security of
their Matter devices before placing trust in them.

This work makes the following contributions.

* We present the first Matter fuzzer in the literature. It
can help IoT vendors, security researchers and numerous
companies and organizations identify bugs and vulnera-
bilities from Matter devices.

The detailed Matter specification enables a unique re-
search opportunity but also imposes a challenge. We
harness LLM to extract information from the sheer vol-
ume of specification, showcasing the effectiveness of
LLM-assisted fuzzing on a large scale.

mGPTFuzz is a blackbox IoT fuzzer that is able to un-
cover non-crash bugs in the application layer. In addition,
semantic information is leveraged to conduct systematic
stateful fuzzing, unveiling stateful bugs.

We employ a controller-based fuzzing architecture. This
design eliminates the need for reverse engineering any
companion apps or collecting API-testing scripts, and
can derive a complete list of the supported commands of
a device under test.

We implement mGPTFuzz and test 23 various Matter de-
vices. The evaluation finds 147 new bugs (including 61
zero-day vulnerabilities), comprising 5 crash bugs and
142 non-crash bugs, with three CVEs assigned.

2 Related Work

2.1 Large Language Model Assisted Fuzzing

Large Language Models (LLMs) have demonstrated remark-
able performance across a wide range of tasks. Very recently,
researchers have started to leverage LLMs for fuzzing. For ex-
ample, TitanFuzz [17] and FuzzGPT [18] use LLMs to gen-
erate code for testing deep learning libraries. Fuzz4A11 [68]
further demonstrates that code of different languages can
be generated using LLMs for testing a variety of compil-
ers and libraries. LLM4Fuzz [55] employs LLMs to guide
fuzzing of smart contracts. ChatAFL [36] utilizes LLMs to
process Request for Comments (RFCs) and generate test in-
puts. ChatFuzz [26] leverages LLMs to mutate seeds in order
to generate format-conforming inputs.

All these works study LLM-assisted greybox fuzzing, as-
suming that the code under test can be instrumented, while our
work is the first that studies LLM-assisted blackbox fuzzing.
Without instrumenting the code (i.e., [oT firmware), how to
infer the program execution status to guide fuzzing is a unique
challenge resolved in this work. In addition, while these works
are mostly focused on finding crash bugs, our work also finds
non-crash bugs in a principled way. This stems from our ap-
proach that extracts meticulous information per command and

utilizes it to verify the correctness of each command execution.
Finally, this work demonstrates the efficacy of LLM-assisted
fuzzing in an important domain—Internet of Things.

2.2 Fuzzing of IoT Firmware

Static analysis of 10T firmware for finding bugs [3, 21, 33,
38,53,60, 61,78, 80] tends to report many false positives.
Emulating firmware can support whitebox or greybox fuzzing,
which dynamically finds IoT vulnerabilities [11, 16,20, 34,37,
52,69,77]. Despite extensive efforts [32,74,75,79], precisely
emulating IoT firmware remains a challenging task [51,69,73].
Worse, many vendors do not provide firmware images publicly
and make it difficult to extract unencrypted firmware from
devices [12,22,51].

Recently, blackbox fuzzing of IoT firmware demonstrates
noteworthy results and becomes an attractive approach [12,
22,35, 51]. For example, IoTFuzzer [12] and DIANE [51]
reverse engineer the companion app of a device under test.
For each 10T device, they analyze its companion app to locate
the code corresponding to IoT functionalities and modify it as
strong obfuscation techniques are widely available [8,71,72].
However, this requires enormous per-device efforts for ana-
lyzing and modifying obfuscated apps [8,19], and the analysis
may be incomplete in identifying IoT functionalities [22,35].
Furthermore, a Matter device, in general, cannot be controlled
by the vendor’s companion app.

SNIPUZZ [22] first collects API-testing scripts disclosed
by IoT vendors and then captures network messages when
running these scripts. The network messages are then mutated
to conduct fuzzing. It saves the effort for reverse engineering
companion apps. However, it has multiple other limitations.
First, very few IoT vendors disclose their API-testing scripts
(Section 4.3). Second, even when a vendor discloses API-
testing scripts, they usually do not cover all the supported
commands of a device. Third, SNIPUZZ fails if network mes-
sages are encrypted, while most IoT devices use encryption
for secure communication [12].

HubFuzzer [35] uses a hub to issue test messages to [oT
devices, and is limited to fuzzing ZigBee and Z-Wave devices.
It inspires our controller-based fuzzing architecture.

BrakTooth [25] mainly tests the data link and network
layers of Bluetooth Classic, while Matter is a standard focused
on the application layer. Unlike BrakTooth, which infers state
machines about Bluetooth Classic from exchanged packets,
we extract state machines from the specification (Section 4.1).

In sum, mGPTFuzz is the first fuzzer for Matter, an important
IoT standard. It does not need to emulate the firmware, reverse
engineer companion apps, or collect API-testing scripts.

2.3 Specification-Guided Fuzzing

Specification-guided fuzzing [29,46, 50] uses manually pre-
pared machine-readable information (or a generator) about

Matter
TCP UDP
IPv6
WiFi Thread Ethernet BLE

(for commissioning)

Figure 1: Protocol stack with Matter.

a protocol to generate test messages. However, this process
is tedious, incomplete and error-prone for non-trivial proto-
cols [47]. We leverage LLMs to obtain the specification infor-
mation, eliminating the need for excessive manual efforts.

3 Background

3.1 Matter

Figure | shows the protocol stack with Matter [65]. Matter is
built on top of the IP layer and uses it as a common for com-
municating with IP-based networks, such as WiFi, Ethernet,
and Thread.

A special device, called a controller, such as a smart
speaker, can add (formally, commission) and manage Matter
devices. To add a device, the controller (or a trusted com-
missioner, such as the companion app of the controller) first
verifies the device’s attestation certificate to make sure it is
signed by a vetted vendor. Then, an operational certificate
is signed by the controller and sent to the device. Here, the
controller serves as a root certification authority (CA). Matter
devices that share the same root CA form a Matter fabric, and
a controller can control all the Matter devices in its fabric.
Matter devices in the same fabric conduct secure P2P commu-
nication with each other through their operational certificates.

A Matter device in a fabric is a node, which has a number
of endpoints, each representing a specific functional unit. For
example, a smart bulb usually has an endpoint about lighting.
An endpoint has one or more clusters, where a cluster is a
group of related functionalities.

A cluster contains attributes and commands. (1) An at-
tribute represents a device state. For example, the On/0ff
cluster has an OnOff attribute that indicates the on/off state
of the device. An attribute has a data type, such as boolean,
integer, and string, and may be read-only or read-write. (2) A
command represents an action that may be performed by a
device.

3.2 Large Language Models

Emerging Large Language Models (LLMs) have demon-
strated impressive performance on a variety of tasks. These
LLMs are pre-trained on billions of available text. Due to the
extensive training data, LLMs can be directly employed for
specific downstream tasks without undergoing fine-tuning on

“This command (KeySetRemove) SHALL fail with an
INVALID_COMMAND status code back to the initiator if the
GroupKeySet ID being removed is 0, which is the Key Set asso-
ciated with the Identity Protection Key (IPK).”

Figure 2: A specification passage ignored by developers.

specialized datasets [10]. This is achieved through prompt
engineering [64], wherein a task description, along with a few
task demonstrations, is presented to the LLM. Researchers
have shown that utilizing the paradigm of directly leveraging
Language Models through prompts can already attain state-
of-the-art performance on downstream tasks [27,57,63,70].

Since the Matter specification is written in a natural lan-
guage, LLMs pre-trained on extensive corpora should be capa-
ble of processing the specification. We thus leverage an LLM
to extract information from the Matter specification. While
the approach of mGPTFuzz is general for different LLMs, we
utilize the well-known LLM: GPT-4 [44].

4 Overview

4.1 Motivation of Using LLM

To extract information from the Matter specification, a
straightforward approach is to manually read it carefully and
draw all the FSMs. However, we use an LLM for the process
because of the following reasons.

* To save much tedious manual effort. The specification
spans 1,258 pages. While the part describing clusters
has 589 pages, the remaining is not useless. For example,
it covers data types and their ranges, as well as defini-
tions of the symbols used in the cluster description. Such
knowledge is first extracted and then used for subsequent
interactions with LLM for cluster-specific queries.

* To avoid overlooking important information. Manu-
ally extracting information from the specification will
likely neglect important information. For example, Mat-
ter SDK developers omitted the information, illustrated
in Figure 2, that the GroupKeySetID = 0 should not be
deleted (CVE-2023-42189). The many non-crash bugs
we found also show that developers omit information.

* To cope with the quick evolution of the standard.
Since Version 1.0 was released in October 2022, three
new versions have been published (V1.1 in May 2023,
V1.2 in October 2023, and V1.3 in May 2024). The
automation of knowledge-base extraction can accelerate
the update of the fuzzer.

Another alternative approach is to extract FSMs from
code [23,25,56]. However, it is incomplete. For example,
the Matter SDK provides a framework for developing an IoT
device, but it does not stipulate all the details. Second, it may
contain bugs, e.g., due to handling parameter value ranges

incorrectly. In sum, the approach does not provide a “stan-
dard” that a Matter device should adhere to. We thus choose
to extract information from the specification.

Finally, LLM-assisted fuzzing is promising but not mature
yet. We encounter multiple questions which, to our knowl-
edge, are not documented in prior LLM-assisted fuzzing work.
For example, how to deal with a large text that exceeds the
token limit; how to generate a complex FSM; how to provide
non-trivial context for subsequent queries. Such experiences
can help other research in this direction.

4.2 Threat Model

System Under Attack and Assumptions. We consider a
smart environment (such as a warehouse, office, or home)
contains various Matter devices. They interact through user-
defined automation rules. We assume the devices have vulner-
abilities like those discussed in our work.

Attacker Model. We consider two types of attackers. (1) A
user in the smart environment, such as a warehouse, can make
use of Matter devices under his/her control to launch attacks.
(2) An attacker has no authorized control over any Matter
devices in the target environment, but can make use of vulner-
abilities in commissioning [39, 54] to add a malicious device
into the target Matter fabric. The attacker then makes use of
the device(s) under his/her control to send exploit commands
to vulnerable devices. The goal is to cause a device into a
state desired by the attacker, which facilitates subsequent ex-
ploitation, such as unauthorized access and burglaries. For
example, an attacker can crash a light to cause poor illumi-
nance for surveillance recordings. As another example, given
the automation rule “when temp > 80°F, open the window”, by
crashing the thermostat, a non-vulnerable smart window may
open. Similar attacks are stressed in the literature [13—15].
Furthermore, without involving attacks, bugs of critical
devices, such as heaters, locks, valves, and smoke detectors,
can pose hazards to smart homes and their residents [24].

4.3 Limitations of a SOTA IoT Fuzzer

SNIPUZZ [22] represents a state of the art approach to black-
box IoT fuzzing. Below, we discuss why SNIPUZZ does not
work well for analyzing Matter devices.

Manually Collecting Testing Programs. SNIPUZZ needs to
manually collect API-testing scripts for each device under
test, while only a few vendors disclose them. For example,
among the 23 devices involved in our evaluation, only 6 have
their API-testing scripts publicly available.

Low Command Coverage. Even for devices that have API-
testing scripts available, these scripts typically only cover a
small portion of commands supported by the devices. Figure 3
shows the comparison between the number of commands
covered by SNIPUZZ and that by our approach.

3 B
SONOFF Switch Eos— = SNIPUZZ
Linkind Dimmer Switch Il—
= Our Approach
TP-Link Light Switch I
Kasa Light Switch I
Vuytret Plug Lo
Tuo Contact Sensor
Tuo Button |
Philip Hue Hub __

Yeelight Cube s

Yale Locker &

EVE Switch |

Agqara Sensor
Linkind Bulb
Govee Light Strip
Onvis Plug

Sengled Smart bulb
Eve Door Sensor

Eve Motion Sensor
Switchbot Hub2
Nanoleaf Light Strip
Orein Smart Lighting
Tapo Plug

\'N'|'\' \'|'H' |

Kasa Plug

=

50

—

00 150 200

Figure 3: Commands covered by SNIPUZZ vs. mGPTFuzz.
Only 6 out of 23 Matter devices (Kasa Plug, Tapo Plug,
Nanoleaf Light Strip, Switchbot Hub2, Govee Light Strip, and
SONOFF Switch) disclosed their API-testing scripts. For the
remaining devices, we enhance SNIPUZZ by considering a
device as an abstract one and counting the commands of an
abstract device as being covered by SNIPUZZ. For example,
a smart switch is abstracted into a binary switch, supporting
the on () and off () commands.

Neglecting the Rich Information in Specification. SNIPUZZ
does not make use of the rich information in specifications
for fuzzing, and is unable to detect stateful or non-crash bugs.

Cannot Handle Encrypted Messages. SNIPUZZ mutates test
inputs by modifying the collected network messages. The
approach fails for encrypted communication used by Matter.

4.4 Goals and Ideas

We aim to build a Matter fuzzer with the following features:
(1) No need to collect API-testing scripts or reverse engineer
companion apps. (2) High command coverage. (3) Making
use of the Specification information to guide fuzzing. (4)
Working with encrypted communication protocols that sup-
port Matter, such as WiFi, Ethernet and Thread. Below, we
present the insights and ideas for constructing these features.

First, as a Matter device can be configured to control an-
other, we initially attempted to build our fuzzer into a custom
Matter device. However, the custom device cannot obtain a
legitimate attestation certificate signed by a vetted vendor.
Our observation is that the certificate of a controller is not
checked, and thus a custom controller can be built, integrating

Setting-Up Functionality Matter
L Messages Extractor Specification
A ﬂ Matter +
M | Test Message ! | Controller Funzi —
atter o {1 . Knowledge GPT-4
Device Mutator Base

g Response |
: z
' .
- : Del\\/lllce.State : Fuz_zi.ng
| onitor § Policies

Figure 4: Architecture of mGPTFuzz.

our fuzzer. This way, we can use a controller to test a device,
without relying on API-testing scripts or companion apps.

Second, according to the Matter specification, when a de-
vice is added by the controller, it announces the device types
along with the supported commands and attributes in the
setting-up messages. This way, we can obtain a complete list
of the supported commands and attributes from the setting-up
messages. Hence, high command coverage can be attained.

Third, the Matter specification contains extensive details,
regarding the command parameter types, value ranges, the
expected response of a command, and the state change due to
a command. Given the relatively new Matter implementation
and the meticulous specification, it is highly improbable that
developers have thoroughly digested the specification and
adhered to all the details when writing the code. Thus, it is a
promising and valuable idea to check the Matter implementa-
tion against the specification. Given the lengthy specification,
we leverage a pre-trained large language model to convert
the human-readable content to machine-readable information,
which guides the fuzzing.

Fourth, we do not mutate network messages for fuzzing,
but modify the code of a controller to generate test messages
in plaintext, which is then encrypted and sent to the device.
Furthermore, we configure a Thread border router in the com-
puter that runs our custom controller. This way, the controller
can test Thread devices, as well as WiFi and Ethernet devices.

4.5 System Architecture

Figure 4 shows the architecture of mGPTFuzz. It contains
the following main components. (1) A custom Matter Con-
troller commissions Matter devices, sends test messages to
them, and receives responses. (2) When a Matter device is
commissioned, it generates a sequence of setting-up mes-
sages. From these messages, the Functionality Extractor
component learns the functionalities of the device, such as
the supported commands and attributes (Section 5.1). (3) An
LLM is leveraged, through prompt engineering, to convert
the Matter specification to a Knowledge Base (Section 5.2).
(4) According to our rich Fuzzing Policies (Section 5.3), the
Fuzzing Mutator generates test messages (Section 5.4). (5)
The Device State Monitor monitors the IoT device to capture
bugs and vulnerabilities, and the results are used to further
guide the fuzzing (Section 5.5).

5 Design of mGPTFuzz

5.1 Learning Functionality of Matter Devices

There are two parts in the Matter specification: Matter Core
Specification [2] and Matter Application Cluster Specifica-
tion [1]. The former provides information about the foun-
dational clusters (such as the group key management and
network diagnose cluster) for establishing and maintaining
communications. The latter provides information about the
application clusters, detailing how devices interact via specific
application data and commands.

A cluster represents a group of related functionalities and
has a unique 2-byte cluster identifier (CID). For instance,
in the Matter Core Specification, the Access Control cluster
(with the CID = 0x001F) sets the rules for managing the
access control list of a device. As another example, in the
Matter Application Cluster Specification, the Level Control
cluster (with the CID = 0x0008) allows for the regulation of a
device’s physical quantity level, such as the brightness of a
bulb or the extension length of a blind. A list of all available
clusters can be found in the two Matter specification.

Extracting Supported Clusters of Devices. A sequence of
setting-up messages are generated when a Matter device con-
nects a controller, which contains rich information about the
device, including the device id, manufacture code, and sup-
ported clusters. Based on the reported information and ac-
cording to the two Matter specification, we can learn the
functionalities supported by the device, and determine (1)
which commands can control this device, and (2) which at-
tributes are supported in the device. As an example, from the
setting-up messages of the Kasa Plug device, we learn that
the device contains two endpoints, where endpoint O includes
10 clusters, and endpoint 1 includes 5 clusters.

5.2 Learning Knowledge Base via LLM

The Matter specification provides a comprehensive descrip-
tion about commands and attributes, including the data type
of each argument for every command, the value range of each
argument, as well as how these commands and attributes mu-
tually influence each another. To support fuzz testing, we
need to extract critical information from the specification
and convert the large amount of human-readable content into
machine-readable information.

We employ an LLM to convert human-readable content
from the specification into machine-readable information. We
first extract information related to commands and attributes
from the specification using the LLM (Section 5.2.1), and
then query the LLM to represent the information as FSMs
(Section 5.2.2). In an FSM, each node represents a device
state and each edge represents a transition triggered by a
command. The entire process of generating the knowledge
base takes roughly 15 minutes for all clusters. By iterating

over the FSMs, our fuzzer performs systematical fuzzing to
detect bugs in devices.

5.2.1 Information Extraction

We design prompt engineering to extract information from
the Matter specification. However, it is known that LLMs can
be creative and may make up information in their responses.
Worse, given the same prompts, LLMs may produce different
outputs across interactions. Thus, a challenge arises: How
to extract accurate and stable information via LLMs? To
overcome this challenge, we employ three methods.

First, the temperature in an LLM is a parameter that con-
trols the randomness of the LLM’s output [43]. A higher
temperature results in more creative and imaginative text,
while a lower one results in more factual and stable text. We
aim to obtain factual information extracted from the Matter
specification; thus, temperature=0 is employed. This setting
ensures that the LLM strictly adheres to the factual nature
of the source material for extracting knowledge, providing
stable and consistent information across different queries.

Second, we employ In-context few-shot learning [57] to
ensure the information extracted by LLMs is accurate and fol-
low the specified output format. In-context few-shot learning
is an effective strategy for improving the model accuracy by
augmenting the context with a small number of examples that
illustrate desired inputs and outputs. This approach enriches
the context for LLMs, enabling them to better understand the
syntax of the prompt, recognize output patterns, and accu-
rately extract information. By employing this technique, we
guide the LLM with examples to accurately extract useful
information in the desired format.

Third, we employ self-consistency checks [62] to refine and
validate the generated responses, ensuring reliability of the re-
sults. Even with the methods above employed, the model may
still output answers that contain some stochastic information,
although such instances are rare. We engage multiple conver-
sations with the LLM and consider the majority of consistent
answers as the final results.

Due to the token limit of GPT-4, we cannot feed the whole
specification to it. We notice that each cluster corresponds to
one chapter in the specification. We thus segment the clus-
ter description part of the specification into multiple pieces,
each for one cluster. However, prior to its extension of the
token limit in November 2023, one long cluster, DoorLock,
spanning 67 pages, exceeds the token limit. Thus, we further
segment the content of the DoorLock cluster and query the
information from each segment one by one. Afterwards, we
concatenate the responses.’

Prompts. There are two types of datatypes: (1) base datatypes,
such as uint, int, and bool, and (2) derived datatypes, which
are derived from the base datatypes. The base datatypes are

2Since November 2023, the token limit has increased to 128,000 tokens,
which corresponds to around 96,000 words or 192 single-spaced pages.

Prompt for Base Datatype

Please provide responses to the question, and it is
imperative that your responses be strictly based on the text
provided below.

[Base Datatype Text].
The query is as follows:

List the data types in the text and their value ranges in
JSON format.

Figure 5: Prompt for querying base datatypes.

shared across all clusters; thus, we only need to make one
query for all the 26 base datatypes, rather than a query for
each cluster. Figure 5 shows the prompt that queries the base
datatypes and their corresponding value ranges.

Figure 6 shows the prompt template for querying infor-
mation per cluster, consisting of the Cluster Text, Queries,
and an Example Output. There are totally 67 clusters. Each
cluster is queried separately, and the prompt generation is
automated by assembling the prompt template using scripts.
Given a cluster, the Cluster Text is converted from its chapter
in the specification. Specifically, we use the Optical Char-
acter Recognition tool [49] to convert the PDF-formatted
specification into text.

Derived datatypes only appear in certain clusters. Thus,
for each cluster, we query the derived datatype and the corre-
sponding value range (Query 1 in Figure 6). Given a cluster,
we also need to know its commands and attributes, the data
types and value ranges for each command’s argument and
each attribute, as well as their IDs (Queries 2-5 in Figure 06).

Responses. Figure 7 shows an example response for the
OnOf £ cluster, which includes five pieces of information (cor-
responding to the five queries in the prompt). Specifically,
there is one derived datatype, six commands, and five at-
tributes for this cluster. For each command, its arguments, the
corresponding datatype, and the command ID are extracted.
For each attribute, its datatypes and ID are also extracted. In
particular, StartUpOnOffEnum is a derived datatype in the
OnOff cluster, serving as the datatype for an argument of the
StartUpOnOff command.

5.2.2 FSM Generation

AnFSM is a tuple (Q,X,A,3), where Q denotes a finite set of
states, X represents the initial state, A represents the destina-
tion state, and § stands for the commands that can map X to A.
Given a cluster, we make a query for each command, and gen-
erate an FSM specific to that command. After that, all FSMs
are combined to form a comprehensive FSM representing the
entire cluster.

Figure 8 shows the prompt template designed to query the
useful information of a command (specified using the com-
mand ID) to generate FSMs. In this process, we employ in-

Prompt Template for Extracting Cluster Information

Please provide responses to the questions in the specified
order and format.

[Cluster Text].

Queries are as follows:

1. Derived Datatypes and Corresponding Value Ranges
2. List of Commands

3. List of Attributes

4. List of Command IDs

5. List of Attribute IDs

Here is an Example Output in JSON format.

[Example Output].

\ 7

Figure 6: Prompt template for querying information of a clus-
ter. It is simplified for the sake of presentation. Appendix A
provides a verbatim example of assembled prompts.

Model Response

"OnOff": {

1. "Derived DataTypes and Value Ranges'": {
"StartUpOnOffEnum": {"values":[0,1,2]}

B

2. "Commands'": {

"Off":[], "On":[], "Toggle":[],
"OffWithEffect":["Effectldentifier":"uint8",
ant":"uint8"],

"OnWithRecallGlobalScene":[],
"OnWithTimedOff":["OnOffControl":"map8","OnTime": "uint16",
"OffWaitTime":"uint16"]

"EffectVari-

)

3. "Attributes'": {

"OnOff":"bool", "GlobalSceneControl":"bool",
"OnTime":"uint16", "OffWaitTime":"uintl16",
"StartUpOnOff":"StartUpOnOffEnum"

o

4. "Command IDs'": ["0x00", "0x01", "0x02", "0x40", "0x41",
"0x42"]

5. "Attribute IDs'": ["0x0000", "0x4000", "0x4001", "0x4002",
"0x4003"],

}

Figure 7: Model response for the OnOf £ cluster.

context few-shot learning as illustrated in the Shot 1 section of
Figure 8. Moreover, we provide the datatype knowledge about
the base datatypes (extracted by the prompt for base datatypes
in Figure 5) and the derived datatypes related to the cluster
(extracted by Query 1 in Figure 6). This enables the LLM
to accurately understand the data range in the second step
of the Chain-of-Thought process. In addition, we leverage
Chain-of-Thought prompting [63] to ensure the precision of
information extracted by LLMs (see the Chain-of-Thought
part in Figure 8). Chain-of-Thought prompting involves struc-
turing prompts to guide LLMs through a series of logical steps,

Prompt Template for Generating an FSM

You will be assigned the role of a Software Testing
Assistant and will receive a portion of the protocol
specification text related to the cluster [Name]. Your
primary task is to prepare the Finite State Machine (FSM)
test cases for software black-box testing. It is imperative
that your responses be strictly based on the text provided. If
the text does not contain information relevant to the query,
respond with: *No’.

Chain-of-Thought:

1. Extract the initial and destination states as mentioned
in the "Effect" section in the provided cluster text.

2. Extract the value range of each command’s argu-
ment to transfer from the initial state to the desti-
nation state. Please refer to the content marked as
"Datatype Knowledge" regarding datatypes and their
value ranges.

3. Extract the invalid value of each command’s argument
and error messages, if specified in the cluster text.

4. Extract unaccepted values of each state.

[Cluster Text]
[Datatype Knowledge]

According to the text, extract the FSM information for the
command with the ID = [CommandID].

Shot 1:
[Place an example of generating an FSM here.]

Desired Output Format:
[Here is the desired output format for the FSM.]

Figure 8: Prompt template for generating an FSM.

similar to a human thought process, to arrive at the desired
output. This technique proves especially effective in complex
situations when the straightforward question-to-answer for-
mat may not produce comprehensive results. Moreover, we
leverage self-consistency checks [62] to enhance the reliability
of the response.

We observed that even when employing methods like set-
ting the temperature=0 to prevent randomness and creativity,
there are still rare situations that 1) the LLM may produce a
response whose format does not align with Shot 1, and 2) the
LLM fabricates information when the provided Cluster Text
does not contain information relevant to a query. We attribute
the first issue to the complexity of the output. To ensure the
LLM response follows the desired format, we add the Desired
Output Format section at the end of the prompt. To address
the second issue, we emphasize not making up information,
as shown in the last sentence of the first paragraph in Figure 8.

Through these methods of designing the prompt, we are
able to effectively obtain FSM information. After generating
FSMs for each command within a cluster, we merge all FSMs
into a comprehensive FSM representing this cluster. There
are 52 FSMs generated, with a total of 521 states and 522 tran-
sitions. Note that 15 clusters do not have any command and
the involved attributes are read-only (e.g., the BooleanState
cluster has only one read-only attribute and zero commands).
For the 52 FSMs, the number of states is in the range of [1, 46],
and the number of edges is in the range of [1, 50]. The most
complex FSM is for the DoorLock cluster, which contains 46
states and 50 edges.

Example. Figure 9 shows part of the generated FSM, achieved
by merging multiple FSMs corresponding to all commands
within the LevelControl cluster. This example contains 10
states and 13 edges. Each edge encompasses detailed informa-
tion on the state transition process, including the command
name and the possible value and data type for each argument.

Verifying the Quality of FSMs. Besides self-consistency
checks with multiple queries, we also manually validate the
quality of the FSMs. We first randomly sample 100 out of the
522 transitions. Three authors spent a total of 9 hours manu-
ally and independently checking the accuracy of the informa-
tion described in the 100 transitions. We confirm that all the in-
formation is accurate. We then pick a cluster, LevelControl,
and check whether all the transitions described in the speci-
fication are covered by the FSM, and result is positive. The
checking demonstrates that the LLM is able to accurately
extract the FSM information.

5.3 Fuzzing Policies

Our fuzzer iterates over the FSMs to generate test inputs. The
following policies are used.

Policy 1: For each FSM edge, we (a) change the argument
values to the values specified by edge; (b) if the valid argument
value is a range, provide extreme values (such as min and max
of the valid range); (c) provide random valid values excluding
the extreme values. Moreover, for each command, we (d)
change the length of a string-type argument trying to trigger
buffer overflows; (e) provide empty values to strings to trigger
uninitialized read or null pointer deference; and (f) provide
NULL or only one element to arrays, sets, or bags to cause null
pointer deference or out-of-bounds access.

Policy 2: Changing Argument Types. Given an argument sup-
posedly with the data type 7, we change its type to a randomly
selected one ¢'. For example, for an argument with the String
type, we change its type to the integer type by replacing a
string value with an integer value, to check whether the device
can handle the special “string”.

Policy 3: Changing the Number of Arguments. For a command
requiring n arguments, we provide n+1, n—1, or O arguments.

Policy 4: Trying Unsupported Clusters and Commands. Be-

MoveToLevel (TargetLevel, TransitionTime)
- TargetLevel : uint8
- TransitionTime : uint16

‘CurrentLevel : any
-any: [1, 254]
OnOff : False

Write_Attri_OnLevel (TargetLevel =1)
- TargetLevel: uint8

CurrentLevel : any
-any: [1, 254]
OnOff : True

StepWithOnOff (StepMode = 1, StepSize, TransitionTime
- StepMode : 0, 1
- StepSize : uint8

- TransitionTime : uint16

Move (MoveMode = 0, Rate)
- MoveMode : 0, 1
- Rate : uint8

CurrentLevel :
254
OnOff : False
- TargetLevel : uint8
- TransitionTime : uint16
MoveToLevel WithOnOff (TargetLevel = 1, TransitionTime)

- TargetLevel : uint8
5
CurrentLevel : 1
OnOff : True

- TransitionTime : uint16

CurrentLevel :
TargetLevel
OnOff : False

Step (StepMode = 1, StepSize, TransitionTime)
- StepMode : 0, 1
- StepSize : uint8

- TransitionTime : uint16

CurrentLevel : 1
OnOff : False

MoveToLevelWithOnOff (TargetLevel = 1, TransitionTime)

Step (StepMode = 0, Rate)
- StepMode : 0, 1
- Rate : uint8

tartupCurrentLevel :
TargetLevel
OnOff : False

Write_Attri_StartupCurrentLevel (TargetLevel)
- Level: uint8

MoveToLevel WithOnOff (TargetLevel, TransitionTime)
- TargetLevel : uint8
- TransitionTime : uint16

MoveWithOnOff (MoveMode = 1, Rate)

CurrentLevel :

- MoveMode : 0, 1 TargetLevel
- Rate : uint8 OnOff :True
Write_Attri_StartupCurrentLevel (TargetLevel)
MoveToLevel (TargetLevel, TransitionTime) - Level uint§
- TargetLevel : uint8 &
- TransitionTime : uint16

StartupCurrentLevel :
TargetLevel
OnOff :True

CurrentLevel : 254
OnOff : True

!

Figure 9: The generated FSM for the LevelControl cluster.

sides the supported clusters, we also randomly select a few
unsupported clusters. For each command in a selected un-
supported cluster, we generate test messages following the
command definition. Through this, we check whether unex-
pected commands can cause the device to crash.

5.4 Constructing Test Messages

To build a test message, given a command, a straightforward
way is to invoke the API in the controller that invokes the com-
mand. However, such APIs contain various input sanitization.
Consequently, invalid test messages cannot be constructed.

To resolve this issue, our solution is to locate the procedure
that packs messages, which we call the (message) packing
procedure. It is invoked by each API to generate messages to
be sent to IoT devices. We then remove the input sanitization
in the packing procedures. Note unlike prior work [12,51] that
removes sanitization in the companion app of each device,
our sanitization elimination is a one-time effort.

There are two types of commands.

¢ Ordinary commands. Each cluster contains zero or more
ordinary commands. The packing procedure, Interaction-
ModelCommands::SendCommand, from the controller
chip-tool [48], is used for generating such commands.

o Write-Attribute can modify the specified cluster at-
tribute. The packing procedure, InteractionModelCom-
mands::WriteAttribute, from chip-tool [48], is used
for generating such commands.

5.5 Device State Monitor

From the perspective of mGPTFuzz, it is trivial to detect a de-
vice crash, as a crash causes a disconnection (and a timeout
exception for the next test message). To detect a non-crash
bug, for each test message, if the response message and the
destination state, in terms of the involved attribute values, do

not adhere to the transition described in the FSMs, a non-
crash bug is captured. Specifically, given a valid test message
(i.e., valid command/attribute ID and argument values), the
controller expects a response message SUCCESS from the de-
vice under test and the destination state is also checked by
querying the attribute describing the state. Given an invalid
one, it expects an error message, such as INVALID COMMAND.

Given a bug, if the symptom can only be reproduced when
the device is at certain states, it is a stateful bug; otherwise, a
non-stateful one.

6 Evaluation

This section presents the implementation and the evaluation
results. Section 6.1 describes the implementation details. Sec-
tion 6.2 presents the experimental setup. Section 6.3 summa-
rizes the bug-finding results. Section 6.4 presents the results
of detecting crash bugs and Section 6.5 non-crash bugs. We
compare mGPTFuzz with a state-of-the-art work in Section 6.6.
Finally, Section 6.7 discusses the efficiency.

6.1 Implementation

We implement a prototype of mGPTFuzz. We utilize an open-
source tool, chip-tool [48], provided by the Matter Consor-
tium, to build our custom controller. We remove the input
sanitization in its message packing procedures, such that our
test inputs are not rejected due to sanitization [51].

The controller is able to commission Matter-over-WiFi
and Matter-over-Ethernet devices using the chip-tool
code-wifi pairing script. To support the Thread radio
communication capabilities, we insert an nRF52840 Micro
Dev Kit USB Dongle (priced at $21.99 on Amazon [5])
to our desktop. Moreover, we install the ot-br-posix li-
brary, which turns our desktop into an OpenThread Border
Router (OTBR) [45]. Subsequently, our custom controller

D Device Type Vendor Model Firmware Version Protocol
1 Plug Kasa KP125MP4 1.0 Matter over WiFi
2 Plug Tapo P125M 1.0.7 Matter over WiFi
3 Bulb Orein 080100811267 3.01.26 Matter over WiFi
4 Lightstrip Nanoleaf | NFO80K03-2LS v3.5.10 Matter over Thread
5 Hub SwitchBot W3202100 v1.0-0.8 Matter over WiFi
6 Motion Sensor Eve 20EBY9901 2.11 Matter over Thread
7 Door Sensor Eve Door 20EBN9901 2.1.1 Matter over Thread
8 Bulb Sengled W41-N15A v22 Matter over WiFi
9 Plug Onvis S4 1.1 Matter over Thread
10 LED Strip Govee H61E1 v3.00.42 Matter over WiFi
11 Smart Bulb Linkind LS0101811266 3.01.26 Matter over WiFi
12 Water Sensor Aqara DW-S02E 1.0 Matter over Thread
13 Switch Eve 20EBU4101 3.2.1 Matter over Thread
14 Locker Yale W41-N15A 1.0 Matter over Thread
15 | Cube Smart Lamp | Yeelight YLFWD-0009 v1.12.69 Matter over WiFi
16 Hub Philip Hue 453761 v1.59.195909703 | Matter over Ethernet
17 Button Tuo TSB3194 1.0 Matter over Thread
18 Contact sensor Tuo TCS-07505 1.0 Matter over Thread
19 Wifi plug Vuytret YX-WS02B v1.0.5 Matter over WiFi
20 Light Switch TP-Link KS225 1.0 Matter over WiFi
21 Light Switch Tapo Tapo S505 1.0 Matter over WiFi
22 Dimmer Switch Linkind BOC74J9FCN 1.0 Matter over WiFi
23 Smart Switch SONOFF MINIR4M 1.0 Matter over WiFi

(b) Photo of devices

(a) Device details

Figure 10: IoT devices used in our experiments.

is able to commission Matter-over-Thread devices using the
chip-tool code-thread pairing script.

For LLM, we use GPT-4-Turbo [44]. The temperature in
an LLM is a parameter that controls the randomness of the
LLM’s output [42]. A higher temperature results in more
creative and imaginative text, while a lower one results in
more accurate and factual text. We aim to obtain precise
and factual information extracted from the Matter protocol
specification; thus, temperature=0 is employed.

To fuzz-test a device, the only manual effort is to pair it
with mGPTFuzz. Note that developing mGPTFuzz, including
prompt engineering, is a one-time effort.

6.2 Experimental Setup

Matter Devices Under Test. We acquire 23 popular consumer
Matter 10T devices from both online and offline markets,
covering various brands, such as Philip Hue, Yeelight, and
Yale. The types of the Matter devices include smart switches,
plugs, lighting, lockers, sensors, and hubs. These devices are
either recommended by Amazon or the best-selling products
in supermarkets. Their details are illustrated in Figure 10.

Testing Environment. Our mGPTFuzz runs on a Ubuntu 20.04
PC with 4.9 GHz Intel® Core™ i7 CPU and 32 GB RAM.
We configure the Matter devices in a fully controlled network
to avoid the interference of irrelevant traffic.

Baseline Method. Blackbox fuzzing of IoT firmware demon-
strates noteworthy results. There are a variety IoT blackbox
fuzzers, such as ToTFuzzer [12], Diane [51], HubFuzer [35],
FIoT [78] and SNIPUZZ [22]. (1) We excluded IoTFuzzer and
Diane for comparison because they send test inputs from
companion apps, while a Matter device cannot be controlled

through the device’s companion app. (2) We excluded Hub-
Fuzzer, as it only tests ZigBee and ZWave devices. (3) We
also excluded fuzzers that are not open source. We thus
picked SNIPUZZ for comparison. Another reason we chose
SNIPUZZ is because the evaluation of SNIPUZZ shows that it
outperforms prior work, such as NEMESYS [30], BooFuzz [29]
and DooNA [67].

6.3 Bug Discovery Results

We divide bugs into two categories: (1) crash bugs, which
result in device crashes, and (2) non-crash bugs, which cause
incorrect behaviors but do not crash devices. From the 23
Matter devices, we discover 147 bugs, including 5 crash bugs
and 142 non-crash bugs. Among the 147 bugs, there are 10
stateful bugs, where 4 are stateful crash bugs and 6 stateful
non-crash bugs. The other 137 bugs can be triggered regard-
less of the current device state. The detailed results are out-
lined in Table 1. Among the 147 bugs, 61 bugs lead to a denial
of service, i.e., the devices crash (CVE-2023-45955 & CVE-
2023-45956), or do not respond until they are re-paired with
the controller (CVE-2023-42189). Given the DoS nature, we
classify the 61 bugs as vulnerabilities.

6.4 Crash Bugs
The 5 identified crash bugs are distributed as follows:

* One crash bugs exist in the device Nanoleaf Lighting
NFO080K03-2LS (with the device ID = 4), and it has been
assigned CVE-2023-45955.

* Four crash bugs exist in Govee Lighting H61E1 (with
the device ID = 10), which are stateful bugs, requiring

Table 1: Summary of bugs detected by mGPTFuzz. (1) UT
stands for Unexpected Transition, meaning the device transits
to an unexpected state. (2) DoS means Denial of Service. Note
that all the bugs are missed by the baseline tool SNIPUZZ.
The fuzzing time is mainly determined by the number of
commands and attributes supported by the device.

Device Crash Bugs Non-crash Bugs Fuzzing
ID #of Bugs Impact | #of Bugs Impact Time
1 0 - 8 UT,DoS | 1.28h
2 0 - 8 UT,DoS | 1.24h
3 0 - 10 UT,DoS | 145h
4 1 DoS 9 UT,DoS | 3.00h
5 0 - 3 UT,DoS | 2.01h
6 0 - 4 UT,DoS | 1.68h
7 0 - 4 UT,DoS | 4.67h
8 0 - 7 UT, DoS | 4.00h
9 0 - 9 UT,DoS | 3.70h
10 4 DoS 12 UT,DoS | 420h
11 0 - 10 UT,DoS | 4.55h
12 0 - 4 UT,DoS | 1.67h
13 0 - 9 UT,DoS | 1.03h
14 0 - 4 UT,DoS | 3.09h
15 0 - 9 UT,DoS | 3.67h
16 0 - 3 UT,DoS | 1.37h
17 0 - 2 DoS 4.50h
18 0 - 2 DoS 293h
19 0 - 6 UT,DoS | 3.92h
20 0 - 7 UT,DoS | 3.40h
21 0 - 6 UT,DoS | 3.60h
22 0 - 2 DoS 3.07h
23 0 - 4 UT,DoS | 3.70h

the device to be set to a particular state to be triggered.
These bugs have been assigned CVE-2023-45956.

Note that to save CVE resources, given multiple bugs of
a device that are related to a group of similar commands or
exploit messages, only one CVE is requested.

Below we discuss these discovered crash bugs. The details
of these bugs are summarized in Table 2. A hidden API means
that the command or attribute is not covered in the vendor’s
API-testing scripts or described in its website.

6.4.1 Crash Bug in Nanoleaf Lighting Device

This bug is related to a hidden write-attribute command,
Write_Attribute_Binding, within the Binding cluster,
which is used to establish a persistent relationship between an
endpoint and local/remote endpoints. This command accepts
one argument with the data type List in the following two
formats: List [node-id, endpoint-id, cluster-id] or
List [group-id].

Triggering Bug. In the fourth column of Table 2, for the
sake of presentation simplicity, only the message payload is
displayed. The payload of a message should follow a specific
JSON format. For example, given a payload, {"0" : 1}, the
integer of 0 within the quotation marks indicates the index of
the argument, and the value of 1 after the colon represents the

value of the corresponding argument. If there is more than
one argument, there will be more than one set of quotation
marks (with each enclosed value indicating the index of each
argument) as well as the corresponding value.

To trigger the bug, mGPTFuzz constructs a command mes-

sage, where the list has only one element with value = 0
(following the fuzzing policy I in Section 5.3), the generated
payloadis ["0" : {"O0"™ : 0}].
Observation. The device is supposed to reject the aforemen-
tioned invalid input. However, it accepts the message. We
observe that the light initially exhibited a flickering behavior,
followed by a crash.

6.4.2 Stateful Crash Bugs in Govee Lighting Device

The four bugs are related to four hidden commands, Move_up
(uint8), Move_down (uint8), Move_up_OnOff (uint8),
and Move_down_OnOff (uint8), which can increase or de-
crease the brightness of the device with or without the OnOff
effect at a certain rate. Each command accepts one argument
with the data type uint8, which specifies the rate value.

Triggering Bugs. If the device is at the required initial state
and then an invalid value of 0 is provided as the command
argument (following the fuzzing policy I in Section 5.3), the
test message makes the device crash. Taking Move_up_OnOff
(unit8) as an example (the last row in Table 2), the nor-
mal payload is {"0" : 20}, where the value of 20 (with-
out quotes) denotes the rate value. If the brightness level
(CurrentLevel) is the lowest (i.e., 1) and the rate in the com-
mand is an invalid value of 0, the generated test message
causes the device to crash. Note 254 represents the highest
brightness value in Matter, and 1 the lowest.

It is worth noting that a stateful bug can be triggered only
if the device is first set to a certain initial state. Otherwise, an
identical exploit input cannot trigger the bug. This exemplifies
the importance of stateful fuzzing.

6.5 Non-Crash Bugs

From the 23 Matter devices, mGPTFuzz finds 142 non-crash
bugs, 6 of which are stateful non-crash bugs. Detecting non-
crash bugs presents a greater challenge compared to crash
bugs, as network connection state, which can be employed
as clues for crash bug detection, is not useful for detecting
non-crash bugs.

We find two types of non-crash bugs: N1) bugs where the
device should reject the corresponding exploit messages but
accepts and processes them; N2) bugs where the device should
accept the corresponding exploit messages but mistakenly
rejects them. The distribution of the two types of non-crash
bugs across the tested devices is shown in Table 3.

Below we present some cases of non-crashed bugs. The
details of these cases are summarized in Table 4. Specifically,
Section 6.5.1 and Section 6.5.2 discuss some cases of non-

Table 2: Details of discovered crash bugs.

Device | Hidden

D API? Command

Normal Message —> Exploit
(only payload is shown)

Required

o Observation CVE
Initial State

Write_Attribute_Binding(List [uintl6])

['0": ("0" : 20]] — ["0":("0" - 0] |
Policy 1: Provide an invalid value
0 to the element of the argument

Any state Device Crashed | CVE-2023-45955

Move_down (uint8)

{"0": 10} — {"0": 0}
Policy 1: Provide an invalid
value 0 to the argument

CurrentLevel = 254 | Device Crashed | CVE-2023-45956

10 v

Move_up (uint8)

{"0":20} — {"0": 0}
Policy 1: Provide an invalid
value 0 to the argument

CurrentLevel = 1 Device Crashed | CVE-2023-45956

10 v Move_down_OnOff (uint8)

{"0":20} — {"0": 0}
Policy 1: Provide an invalid
value 0 to the argument

CurrentLevel = 254 | Device Crashed | CVE-2023-45956

10 Ng Move_up_OnOff (uint8)

{"0":20} — {"0": 0}
Policy 1: Provide an invalid
value 0 to the argument

CurrentLevel = 1 Device Crashed | CVE-2023-45956

Table 3: Summary of non-crashed bugs. There are two types
of non-crashed bugs. Type NI refers to bugs where the device
should reject the test messages but instead accepts them. Type
N2 refers to bugs where the device should accept the test
messages but mistakenly rejects them.

Device | Type NI Type N2 || Device | Type NI Type N2
ID # of Bugs | # of Bugs ID # of Bugs | # of Bugs
1 8 - 13 9 -
2 8 - 14 4 -
3 9 1 15 9 -
4 9 - 16 3 -
5 3 - 17 2 -
6 4 - 18 2 -
7 4 - 19 6 -
8 7 - 20 7 -
9 9 - 21 6 -
10 12 - 22 2 -
11 9 1 23 4 -
12 4 -

crash bugs of Type N1 (Section 6.5.2 focuses on stateful
non-crash bugs of Type N1), and Section 6.5.3 Type N2.

6.5.1 Non-Crash Bugs of Type N1 in All Matter Devices

Two non-crash bugs affect all the Matter devices, as shown
in Table 2 (with the device ID labeled as All). These bugs
have been assigned CVE-2023-42189. They are not stateful
bugs, so can be triggered in any device states. Both bugs are
related to the hidden command, KeySetRemove (uintl16)
(see Figure 2). This command is used to remove a key set
from an entire stack storing all keys, where the index for
removal is determined by the argument of the command. This
command accepts one argument with the data type uint16
and its valid value range is [1, 65534].

Triggering Bugs. There are two ways to exploit the hidden
command KeySetRemove () to trigger the non-crash bugs, as
shown in Table 2 (with the device ID labeled as All).

(1) If an invalid value {"0" : 0} is generated for the ar-
gument (following the fuzzing policy 1 in Section 5.3), no
matter what the current device state is, the message causes

the device to become unresponsive and out of service.

(2) If no arguments are provided to the command (follow-
ing the fuzzing policy 3 in Section 5.3), the generated test
message causes a device to become unresponsive to any sub-
sequent request, regardless of the current device state.

Analysis. Since the non-crash bugs are present across all the
devices, we suspect that they are associated with the Matter
SDK. We thus report the bugs to the Matter SDK developer,
and they confirm the bugs and have fixed them promptly (in
Matter vl.1), as documented in [40]. Below, we analyze
the root cause of the bug and its patch.

When a Matter controller sends the KeySetRemove com-
mand to a Matter device, the Matter device invokes the
KeySetRemoveCallBack function to manage the command
and process its payload. The payload specifies the index of
the key set that should be removed. When the index is O,
the key set is associated with the Identity Protection Key
(IPK). On the other hand, if the index is not specified (i.e., no
argument is provided to the KeySetRemove command), the
KeySetRemoveCallBack function automatically assigns the
removal index to 0. The IPK serves as a crucial public key
utilized by both the Matter device and Matter controller. It
undergoes verification throughout the entire communication
between the Matter device and controller to guarantee the in-
tegrity of the communication. If the verification of IPK fails,
any further service request of the device is denied, resulting
in a Denial of Service (DoS). Therefore, the IPK should not
be removed in order to maintain the security and functionality
of the Matter system.

However, the vulnerable KeySetRemoveCallBack func-
tion, when provided with a removal index of 0, incorrectly
removes the IPK, and sends a SUCCESS response to the
controller (or mGPTFuzz in our work). As the IPK is re-
moved, the encrypted communication cannot be decrypted
and verified, rendering the Matter device unresponsive to
any subsequent requests. To rectify this issue, the patched
KeySetRemoveCallBack function incorporates this check-
ing: it first verifies whether the removal index is O or not

before executing the key removal action. If the index is O, it
replies with INVALID_COMMAND as a status code.

6.5.2 Stateful Non-Crash Bugs of Type N1

We find six Type N1 stateful non-crash bugs in the device
Govee Lighting H61E1 (with the device ID = 10). These non-
crash bugs are related to three hidden commands, MoveHue,
MoveSaturation, EnhancedMoveHue. Each command ac-
cepts two arguments, where the first argument is of the data
type enum and takes a value € [0,1,2,3], and the second one
is of the data type uint8. Taking MoveHue as an example, the
first argument is MoveMode, which determines the direction
of the hue change. Specifically. When MoveMode equals 0, it
indicates stop direction (i.e., no hue change); when MoveMode
equals 1, the device should increase its hue. When MoveMode
equals 3, the device should decrease its hue. The second argu-
ment Rate specifies the rate of movement per second.

Triggering Bugs. The Matter specification explicitly states
that (1) a message, where the first argument, MoveMode, is set
to 1 (increase) or 3 (decrease), and the second argument Rate
equals 0, is considered as an invalid message, and (2) if this
invalid message is sent to the device, the device should reject
the message and respond with INVALID_COMMAND.

Our tool mGPTFuzz successfully extracts this critical infor-
mation from the specification, and finds two ways to trigger
the non-crash bugs for each command, as shown in Table 4
(corresponding to the rows where the device ID = 10). Taking
MoveHue as an example, if the first parameter is assigned a
value of 1 or 3, the second parameter is set to a value of 0, and
at the same time, the current hue value is set to the maximum
(i.e., 254), the device accepts the invalid test message. To
trigger other non-crash bugs, the details of the test messages
are also outlined in Table 4.

Observations. According to the Matter specification, the
aforementioned test messages are invalid, and the expected
behavior of the device is to reject them and reply with
INVALID_COMMAND. But our observations reveal that upon
receiving these test messages, the actual behavior of the de-
vice is to accept and process them, resulting in an alteration
of the light color and the hue value changed to 0.

6.5.3 Non-Crash Bugs of Type N2

We find one Type N2 non-crash bug in each of the two devices,
Orein Bulb 0S0100811267 (with the device ID = 3) and
Linkind Bulb LS0101811266 (with the device ID = 11). This
bug is related to the hidden command MoveColor (intl6,
int16), which is used to modify the ColorMode attribute on
a device, prompting it to transition colors continuously at
the specified rates. It accepts two arguments of the data type
int16, which specify the rates of color changes per second.

Triggering Bug and Observations. When both the first and
second arguments are assigned a value of 0, the resulting

@
i
B
S

S
2

/

o
3

Time (Minute)
\
Time (Minute)

~

0 0
0 1500 3000 0 500 1000 1500
Test Case Test Case

(a) Nanoleaf Lightstrip NFOB0K03-2LS (ID = 4) (b) Eve Motion Sensor 20EBY9901 (ID = 6)

Figure 11: Efficiency results, where a red dot denotes a crash
bug and a green dot denotes a non-crash bug.

test message is valid and should be accepted by the device.
However, the devices reject the message.

6.6 Comparison with Baseline Method

We consider SNIPUZZ as the baseline, which represents a state
of the art in blackbox fuzzing of IoT devices [22]. For fair
comparison, we have extended the capabilities of SNIPUZZ.
(1) SNIPUZZ is integrated into our custom controller, so plain-
text messages are presented to SNIPUZZ. Consequently, it is
able to test Matter devices, which always use encrypted com-
munication. (2) Hidden commands are provided to it. The
details are described below.

SNIPUZZ is designed to detect crash bugs, and is not capa-
ble of detecting non-crash bugs. We thus compare the per-
formance of crash bugs detection between SNIPUZZ and our
tool mGPTFuzz. The original version of SNIPUZZ cannot fuzz-
test Matter devices. We thus enhance SNIPUZZ by integrating
it into our custom controller, so plaintext messages are pre-
sented to SNIPUZZ. We use the enhanced SNIPUZZ to test all
the 23 Matter devices. However, after 24 hours of fuzz testing
on each device, no bugs are found by SNIPUZZ.

SNIPUZZ requires the API-testing programs of IoT devices
to collect seed messages and can only test the commands
covered by the API-testing programs. As a result, it cannot
detect the crash bugs triggered by the hidden commands,
which include all the 5 crash bugs detected by mGPTFuzz.

We then proceed to investigate whether SNIPUZZ could de-
tect these bugs if the corresponding hidden commands were
provided to it. Specifically, for each discovered crash bug, we
provide SNIPUZZ with a message associated with the hidden
command that involves this bug. We then use the snippet de-
termination algorithm of SNIPUZZ to partition these messages.
The results show SNIPUZZ is unable to accurately determine
the snippets for any of them. E.g., the message that can trig-
ger a bug related to the command Move_up (discussed in
Section 6.4.2) should be partitioned into 14 snippets, but it is
inaccurately partitioned into 6 snippets after a 2-hour analysis.

We further investigate the snippet determination algorithm
of SNIPUZZ, and have the following findings. The Matter
protocol requires the payload of a Matter message to follow a
JSON format. However, as SNIPUZZ removes the bytes in a
message one by one to generate probe messages, this results
in probe messages not following the JSON format.

Table 4: Some of the discovered non-crash bugs.

Device | Hidden Normal Message — Test

Required Device

D API? Command (only payload is shown) Initial State Expected Behavior Actual Behavior
(0™ 20) — ("0": 0)
ng:l.ﬂ elq l::)[;lf;at;zs:ld Device should Device was
All v KeySetRemove (uint16) {(; 207 j 0 Any state reject message & Out of
(CVE-2023-42189) Policy 3: provide respond INVALID_COMMAND Service
no argument
0" 1, "1™ 2] — ("0 1, "1 0]
Poj:l.ﬂ elq l::)t;:j;z:::s:ld Device should Device state
. e e reject message & was changed to
. , 3 -
10 v MoveHue (enum, uint8) { Ol;jiic; I..Sl)}r(;;e{ a(:l invalild 0} CurrentHue = 254 respond TNVALTD_COMVAND CurrentHue = 0
value 0 to the argument
(0" 1, "1™ 2] — ("0 1, "1": 0]
Poj::l.ﬂ el",‘\ l::i;:’z;t;:ﬁ:ld Device should Device state
MoveSaturation (enum, uint8) e ——— . reject message & was changed to
: : 13, : atura = .
10 v "o I;jiic; I 'SP}rt;:ie{ 821 invhlil d 0l CurrentSaturation = 254 respond INVALID_COMMAND CurrentSaturation = 0
value 0 to the argument
{"0" 1,"1" 2} — {"0": 1, "1": 0}
Poj:cl'{; elf) I:Si;fz;tzg::ld Device should Device state
10 v EnhancedMoveHue (enum, uint8) o —— = — reject message & was changed to
, ‘ 3 . . -
"o i’;iic; I 'SP}n;:ii 821 mvalll d. 0} | EnhancedCurrentHue =254 respond INVALID_COMMAND | EnhancedCurrentHue = 0
value 0 to the argument
(0™ 3,"1" 2} — ("0™: 0, "1": 0} . .
3,11 Ng MoveColor (intl16, intl16) Policy 1: Provide a Any State Device should . Device
value 0 to both arguments accept message rejected message

6.7 Efficiency

In the last column of Table |, we present the total time spent
by mGPTFuzz on testing each device. The longest testing time
is approximately 5 hours for the device with ID = 7.

We use two devices as examples to illustrate the fuzzing
efficiency in term of bugs discovered over time (Y-axis) and
over the number of test messages (X-axis). As shown in Fig-
ure | 1. mGPTFuzz can discover crash bugs and non-crash bugs
efficiently. For the device Nanoleaf Lightstrip NFOS80K03-2LS
shown in Figure 11(a), all bugs are found within 110 minutes
and <3100 test message, and the first bug is found within
10 minutes. For the device Eve Motion Sensor 20EBY9901
shown in Figure 1 1(b), all the four bugs are found within 90
minutes and <1200 test messages.

7 Discussion

Compared to prior work [12,22,51], mGPTFuzz is limited to
fuzzing Matter devices. However, given the importance of
Matter, it is worth the dedicated effort. Furthermore, the ap-
proach of LLM-assisted blackbox fuzzing can be generalized
to other scenarios where the specification is available, such
as Zigbee, Thread and Bluetooth.

Ethical Considerations and Proactive Harm Prevention.
We have contacted all the vendors regarding the bugs and
vulnerabilities of their products. We have reported the vul-
nerability (CVE-2023-42189) to the Matter SDK developer,
since it impacts all the Matter devices. It has been fixed in
Matter V1.1. After contacting them, we waited at least 90
days before reporting the vulnerabilities for CVE assignment.

Matter is released under the Apache 2.0 license, permitting
various uses. The specification is publicly accessible on the
official website [1,2]. More importantly, according to the
instructions of ChatGPT [41], ChatGPT does not use con-
tent from its business offerings such as ChatGPT Team or
ChatGPT Enterprise to train its models. We utilized ChatGPT
Team throughout the study. Therefore, our approach using
ChatGPT does not cause an ethical issue.

8 Conclusion

As an industry-wide IoT standard, Matter is expected to com-
pletely change the ecology of smart devices. Thus, fuzzing of
Matter devices is an emerging important problem. We present
the first Matter fuzzer in the literature. A large language model
is leveraged to transform the human-readable specification,
over one thousand pages, to machine-readable information
in the form of finite state machines (FSMs). Guided by the
FSMs, our blackbox fuzzing is able to find stateful bugs and
non-crash bugs, as well as crash bugs. We have built a pro-
totype of mGPTFuzz and conducted an extensive evaluation
involving 23 Matter devices. It finds 147 new bugs, including
61 zero-day vulnerabilities with three CVEs assigned.

Acknowledgements

This work was supported in part by the US National Sci-
ence Foundation (NSF) under grants CNS-2304720, CNS-
2310322, CNS-2309550, and CNS-2309477. It was also sup-
ported in part by the Commonwealth Cyber Initiative (CCI).
The authors would like to thank the anonymous reviewers for
their valuable comments.

References

[1] Matter 1.0 application cluster specification, 2022. https:
/[csa-iot.org/wp-content/uploads/2022/11/22-27350-0
01_Matter-1.0- Application- Cluster-Specification.pdf.

[2] Matter 1.0 core specification, 2022. https://csa-iot.org
/wp-content/uploads/2022/11/22-27349-001_Matter-1
.0-Core-Specification.pdf.

[3] Zafeer Ahmed, Ibrahim Nadir, Haroon Mahmood,
Ali Hammad Akbar, and Ghalib Asadullah Shah. Iden-
tifying mirai-exploitable vulnerabilities in IoT firmware
through static analysis. In Proc. IEEE International
Conference on Cyber Warfare and Security, 2020.

[4] Amazon Developer. Alexa and matter, 2024. https:
/ldeveloper.amazon.com/en- US/alexa/matter.

[5] Amazon.com. GeeekPi nRF52840 Micro Dev Dongle.
https://www.amazon.com/GeeekPi-nRF52840-Micro
-Dev-Dongle/dp/BO7TMI12XLG/ref=sr_1_2?crid=0Q
HJSOLRCRHI&keywords=nRF52840+Dongle&qid=
1678331320&sprefix=nrf52840+dongle%2Caps%2C7
4&sr=8-2.

[6] Arrow Electronics. Matter solves IoT and smart home
challenges, 2023. https://www.arrow.com/en/researc
h-and-events/articles/matter-solves-iot-and-smart-h
ome-challenges.

[7] Vaggelis Atlidakis, Patrice Godefroid, and Marina Pol-
ishchuk. Restler: Stateful REST API fuzzing. In Proc.
IEEE International Conference on Software Engineer-
ing (ICSE), 2019.

[8] Lina Berzinskas. Obfuscating Android Apps: Do you
know your choices for protection?, 2020. https://proa
ndroiddev.com/obfuscation-is-important-do-you-kno
w-your-options-30b3ef396dfe.

[9] Tim Blazytko, Moritz Schlogel, Cornelius Aschermann,
Ali Abbasi, Joel Frank, Simon Worner, and Thorsten
Holz. AURORA: Statistical crash analysis for auto-
mated root cause explanation. In USENIX Security Sym-
posium (USENIX Security), 2020.

[10] Sébastien Bubeck, Varun Chandrasekaran, Ronen Eldan,
Johannes Gehrke, Eric Horvitz, Ece Kamar, Peter Lee,
Yin Tat Lee, Yuanzhi Li, Scott Lundberg, Harsha Nori,
Hamid Palangi, Marco Tulio Ribeiro, and Yi Zhang.
Sparks of artificial general intelligence: Early experi-
ments with GPT-4. arXiv:2303.12712, 2023.

[11] Daming D Chen, Maverick Woo, David Brumley, and
Manuel Egele. Towards automated dynamic analysis

(12]

[13]

[14]

[15]

[16]

(17]

(18]

(19]

(20]

for Linux-based embedded firmware. In Network and
Distributed System Security Symposium (NDSS), 2016.

Jiongyi Chen, Wenrui Diao, Qingchuan Zhao, Chaoshun
Zuo, Zhigiang Lin, XiaoFeng Wang, Wing Cheong Lau,
Menghan Sun, Ronghai Yang, and Kehuan Zhang. IoT-
Fuzzer: Discovering memory corruptions in IoT through
App-based fuzzing. In Network and Distributed System
Security Symposium (NDSS), 2018.

Haotian Chi, Chenglong Fu, Qiang Zeng, and Xiaojiang
Du. Delay wreaks havoc on your smart home: Delay-
based automation interference attacks. In Proc. IEEE
Symposium on Security and Privacy (S&P), 2022.

Haotian Chi, Qiang Zeng, and Xiaojiang Du. Detecting
and handling IoT interaction threats in multi-platform
multi-control-channel smart homes. In USENIX Security
Symposium (USENIX Security), 2023.

Haotian Chi, Qiang Zeng, Xiaojiang Du, and Jiaping Yu.
Cross-App interference threats in smart homes: Catego-
rization, detection and handling. In Proc. IEEE/IFIP
International Conference on Dependable Systems and
Networks (DSN), 2020.

Andrei Costin, Apostolis Zarras, and Aurélien Francil-
lon. Automated dynamic firmware analysis at scale: A
case study on embedded web interfaces. In Proc. ACM
Asia Conference on Computer and Communications Se-
curity (ASIACCS), 2016.

Yinlin Deng, Chunqiu Steven Xia, Haoran Peng,
Chenyuan Yang, and Lingming Zhang. Large language
models are zero-shot fuzzers: Fuzzing deep-learning
libraries via large language models. In Proc. ACM SIG-
SOFT International Symposium on Software Testing and
Analysis (ISSTA), 2023.

Yinlin Deng, Chunqgiu Steven Xia, Chenyuan Yang,
Shizhuo Dylan Zhang, Shujing Yang, and Lingming
Zhang. Large language models are edge-case fuzzers:
Testing deep learning libraries via FuzzGPT. arXiv
preprint arXiv:2304.02014, 2023.

Shuaike Dong, Menghao Li, Wenrui Diao, Xiangyu Liu,
Jian Liu, Zhou Li, Fenghao Xu, Kai Chen, Xiaofeng
Wang, and Kehuan Zhang. Understanding Android ob-
fuscation techniques: A large-scale investigation in the
wild. In Proc. Security and Privacy in Communication
Networks (SecureComm), 2018.

Xuechao Du, Andong Chen, Boyuan He, Hao Chen, Fan
Zhang, and Yan Chen. AflloT: Fuzzing on Linux-based
IoT device with binary-level instrumentation. Comput-
ers & Security, 122:102889, 2022.

https://csa-iot.org/wp-content/uploads/2022/11/22-27350-001_Matter-1.0-Application-Cluster-Specification.pdf
https://csa-iot.org/wp-content/uploads/2022/11/22-27350-001_Matter-1.0-Application-Cluster-Specification.pdf
https://csa-iot.org/wp-content/uploads/2022/11/22-27350-001_Matter-1.0-Application-Cluster-Specification.pdf
https://csa-iot.org/wp-content/uploads/2022/11/22-27349-001_Matter-1.0-Core-Specification.pdf
https://csa-iot.org/wp-content/uploads/2022/11/22-27349-001_Matter-1.0-Core-Specification.pdf
https://csa-iot.org/wp-content/uploads/2022/11/22-27349-001_Matter-1.0-Core-Specification.pdf
https://developer.amazon.com/en-US/alexa/matter
https://developer.amazon.com/en-US/alexa/matter
https://www.amazon.com/GeeekPi-nRF52840-Micro-Dev-Dongle/dp/B07MJ12XLG/ref=sr_1_2?crid=OQHJSOLRCRHI&keywords=nRF52840+Dongle&qid=1678331320&sprefix=nrf52840+dongle%2Caps%2C74&sr=8-2
https://www.amazon.com/GeeekPi-nRF52840-Micro-Dev-Dongle/dp/B07MJ12XLG/ref=sr_1_2?crid=OQHJSOLRCRHI&keywords=nRF52840+Dongle&qid=1678331320&sprefix=nrf52840+dongle%2Caps%2C74&sr=8-2
https://www.amazon.com/GeeekPi-nRF52840-Micro-Dev-Dongle/dp/B07MJ12XLG/ref=sr_1_2?crid=OQHJSOLRCRHI&keywords=nRF52840+Dongle&qid=1678331320&sprefix=nrf52840+dongle%2Caps%2C74&sr=8-2
https://www.amazon.com/GeeekPi-nRF52840-Micro-Dev-Dongle/dp/B07MJ12XLG/ref=sr_1_2?crid=OQHJSOLRCRHI&keywords=nRF52840+Dongle&qid=1678331320&sprefix=nrf52840+dongle%2Caps%2C74&sr=8-2
https://www.amazon.com/GeeekPi-nRF52840-Micro-Dev-Dongle/dp/B07MJ12XLG/ref=sr_1_2?crid=OQHJSOLRCRHI&keywords=nRF52840+Dongle&qid=1678331320&sprefix=nrf52840+dongle%2Caps%2C74&sr=8-2
https://www.arrow.com/en/research-and-events/articles/matter-solves-iot-and-smart-home-challenges
https://www.arrow.com/en/research-and-events/articles/matter-solves-iot-and-smart-home-challenges
https://www.arrow.com/en/research-and-events/articles/matter-solves-iot-and-smart-home-challenges
https://proandroiddev.com/obfuscation-is-important-do-you-know-your-options-30b3ef396dfe
https://proandroiddev.com/obfuscation-is-important-do-you-know-your-options-30b3ef396dfe
https://proandroiddev.com/obfuscation-is-important-do-you-know-your-options-30b3ef396dfe

[21]

[22]

[23]

[24]

[25]

[26]

[27]

(28]

[29]

[30]

[31]

[32]

Qian Feng, Rundong Zhou, Chengcheng Xu, Yao Cheng,
Brian Testa, and Heng Yin. Scalable graph-based bug
search for firmware images. In Proc. ACM SIGSAC
Conference on Computer and Communications Security

(CCS), 2016.

Xiaotao Feng, Ruoxi Sun, Xiaogang Zhu, Minhui Xue,
Sheng Wen, Dongxi Liu, Surya Nepal, and Yang Xiang.
Snipuzz: Black-box fuzzing of IoT firmware via mes-
sage snippet inference. In Proc. ACM Conference on
Computer and Communications Security (CCS), 2021.

Paul Fiterau-Brostean, Bengt Jonsson, Robert Merget,
Joeri de Ruiter, Konstantinos Sagonas, and Juraj So-
morovsky. Analysis of DTLS implementations using
protocol state fuzzing. In USENIX Security Symposium
(USENIX Security), 2020.

Chenglong Fu, Qiang Zeng, and Xiaojiang Du.
HAWatcher: Semantics-aware anomaly detection for
appified smart homes. In USENIX Security Symposium
(USENIX Security), 2021.

Matheus E Garbelini, Vaibhav Bedi, Sudipta Chattopad-
hyay, Sumei Sun, and Ernest Kurniawan. BrakTooth:
Causing havoc on bluetooth link manager via directed
fuzzing. In USENIX Security Symposium (USENIX Se-
curity), 2022.

Jie Hu, Qian Zhang, and Heng Yin. Augmenting
greybox fuzzing with generative Al. arXiv preprint
arXiv:2306.06782, 2023.

Zhigiang Hu, Lei Wang, Yihuai Lan, Wanyu Xu, Ee-
Peng Lim, Lidong Bing, Xing Xu, Soujanya Poria, and
Roy Ka-Wei Lee. LLM-Adapters: An adapter family for
parameter-efficient fine-tuning of large language models.
arXiv preprint arXiv:2304.01933, 2023.

Apple Inc. Matter support in ios 16, 2023. https://deve
loper.apple.com/apple-home/matter/.

Joshua Pereyda. Boofuzz: Network protocol fuzzing for
humans, 2017. https://github.com/jtpereyda/boofuzz.

Stephan Kleber, Henning Kopp, and Frank Kargl.
NEMESYS: Network message syntax reverse engineer-
ing by analysis of the intrinsic structure of individual
messages. In USENIX Workshop on Offensive Technolo-
gies, 2018.

Platon Kotzias, Srdjan Matic, Richard Rivera, and Juan
Caballero. Certified PUP: abuse in authenticode code
signing. In Proc. ACM SIGSAC Conference on Com-
puter and Communications Security (CCS), 2015.

Wengiang Li, Jiameng Shi, Fengjun Li, Jingqgiang Lin,
Wei Wang, and Le Guan. yuAFL: Non-intrusive feedback-
driven fuzzing for microcontroller firmware. In Proc.

(33]

[34]

[35]

(36]

(37]

(38]

(39]

[40]

[41]

[42]

[43]

[44]

IEEE International Conference on Software Engineer-
ing (ICSE), 2022.

Lannan Luo and Qiang Zeng. Solminer: Mining distinct
solutions in programs. In Proc. IEEE International
Conference on Software Engineering (ICSE), 2016.

Lannan Luo, Qiang Zeng, Bokai Yang, Fei Zuo, and
Junzhe Wang. Westworld: Fuzzing-assisted remote dy-
namic symbolic execution of smart Apps on IoT cloud
platforms. In Annual Computer Security Applications
Conference (ACSAC), 2021.

Xiaoyue Ma, Qiang Zeng, Haotian Chi, and Lannan Luo.
No more companion Apps hacking but one dongle: Hub-
based blackbox fuzzing of IoT firmware. In Proc. ACM
International Conference on Mobile Systems, Applica-
tions, and Services (MobiSys), 2023.

Ruijie Meng, Martin Mirchev, Marcel Bohme, and Ab-
hik Roychoudhury. Large language model guided proto-
col fuzzing. In Network and Distributed System Security
Symposium (NDSS), 2024.

Alejandro Mera, Bo Feng, Long Lu, and Engin Kirda.
DICE: Automatic emulation of DMA input channels for
dynamic firmware analysis. In Proc. IEEE Symposium
on Security and Privacy (S&P), 2021.

Ibrahim Nadir, Zafeer Ahmad, Haroon Mahmood,
Ghalib Asadullah Shah, Farrukh Shahzad, Muhammad
Umair, Hassam Khan, and Usman Gulzar. An audit-
ing framework for vulnerability analysis of IoT system.
In Proc. IEEE European Symposium on Security and
Privacy Workshops, 2019.

National Institute of Standards and Technology (NIST).
CVE-2022-25836, 2022. https://nvd.nist.gov/vuln/deta
il/CVE-2022-25836.

National Institute of Standards and Technology (NIST).
CVE-2023-42189, 2023. https://nvd.nist.gov/vuln/deta
il/CVE-2023-42189.

OpenAl. What is ChatGPT, 2022. https://help.openai.
com/en/articles/6783457-what-is-chatgpt.

OpenAl. API for authentication, 2023. https://platform
.openai.com/docs/api-reference/authentication.

OpenAl. Createtranscription: Temperature parameter,
2023. https://platform.openai.com/docs/api-reference
/audio/createTranscription#audio-createtranscription-t
emperature.

OpenAl. Gpt-4 and GPT-4 turbo documentation, 2023.
https://platform.openai.com/docs/models/gpt-4-and-g
pt-4-turbo.

https://developer.apple.com/apple-home/matter/
https://developer.apple.com/apple-home/matter/
https://github.com/jtpereyda/boofuzz
https://nvd.nist.gov/vuln/detail/CVE-2022-25836
https://nvd.nist.gov/vuln/detail/CVE-2022-25836
https://nvd.nist.gov/vuln/detail/CVE-2023-42189
https://nvd.nist.gov/vuln/detail/CVE-2023-42189
https://help.openai.com/en/articles/6783457-what-is-chatgpt
https://help.openai.com/en/articles/6783457-what-is-chatgpt
https://platform.openai.com/docs/api-reference/authentication
https://platform.openai.com/docs/api-reference/authentication
https://platform.openai.com/docs/api-reference/audio/createTranscription#audio-createtranscription-temperature
https://platform.openai.com/docs/api-reference/audio/createTranscription#audio-createtranscription-temperature
https://platform.openai.com/docs/api-reference/audio/createTranscription#audio-createtranscription-temperature
https://platform.openai.com/docs/models/gpt-4-and-gpt-4-turbo
https://platform.openai.com/docs/models/gpt-4-and-gpt-4-turbo

[45] OpenThread. ot-br-posix, 2024. https://github.com/ope
nthread/ot-br-posix.

[46] PeachTech. Peach fuzzer community. https://peachtech.
gitlab.io/peach-fuzzer-community/.

[47] Van-Thuan Pham, Marcel Bohme, and Abhik Roychoud-
hury. AFLNet: A greybox fuzzer for network protocols.
In Proc. IEEE International Conference on Software
Testing, Validation and Verification (ICST), 2020.

[48] Project CHIP. Connected home over IP, 2024. https:
//github.com/project-chip/connectedhomeip.

[49] PyPI. pytesseract: Python-tesseract is an optical char-
acter recognition (OCR) tool for python, 2023. https:
/Ipypi.org/project/pytesseract/.

[50] Shisong Qin, Fan Hu, Zheyu Ma, Bodong Zhao, Tingting
Yin, and Chao Zhang. NSFuzz: Towards efficient and
state-aware network service fuzzing. ACM Transactions
on Software Engineering and Methodology, 32(6):1-26,
2023.

[51] Nilo Redini, Andrea Continella, Dipanjan Das, Giulio
De Pasquale, Noah Spahn, Aravind Machiry, Antonio
Bianchi, Christopher Kruegel, and Giovanni Vigna. DI-
ANE: Identifying fuzzing triggers in Apps to generate
under-constrained inputs for IoT devices. In Proc. IEEE
Symposium on Security and Privacy (S&P), 2021.

[52] Mengfei Ren, Xiaolei Ren, Huadong Feng, Jiang Ming,
and Yu Lei. Z-fuzzer: device-agnostic fuzzing of zigbee
protocol implementation. In Proc. ACM Conference on
Security and Privacy in Wireless and Mobile Networks,
2021.

[53] Vinay Sachidananda, Suhas Bhairav, and Yuval Elovici.
OVER: Overhauling vulnerability detection for IoT
through an adaptable and automated static analysis
framework. In Proc. ACM Symposium on Applied Com-
puting (SAC), 2020.

[54] Schutzwerk GmbH. Security considerations for matter
developers, 2023. https://www.schutzwerk.com/en/blog
/matter-security-considerations/.

[55] Chaofan Shou, Jing Liu, Doudou Lu, and Koushik
Sen. LLM4Fuzz: Guided fuzzing of smart con-
tracts with large language models. arXiv preprint
arXiv:2401.11108, 2024.

[56] Zhan Shu and Guanhua Yan. Iotinfer: Automated black-
box fuzz testing of IoT network protocols guided by
finite state machine inference. IEEE Internet of Things
Journal, 9(22):22737-22751, 2022.

[57] Simeng Sun, Yang Liu, Dan Iter, Chenguang Zhu, and
Mohit Iyyer. How does in-context learning help prompt
tuning? arXiv preprint arXiv:2302.11521, 2023.

[58] The Verge. Nest thermostat gains Matter support, works
with Apple home, 2023. https://www.theverge.com/202
3/4/18/23687751/nest-thermostat- matter-support-app
le-home.

[59] Jennifer Pattison Tuohy. Matter’s plan to save the smart
home, 2021. https://www.theverge.com/22787729/matt
er-smart-home-standard-apple-amazon-google.

[60] Junzhe Wang and Lannan Luo. Privacy leakage analysis
for colluding smart apps. In IEEE/IFIP International
Conference on Dependable Systems and Networks Work-
shops, 2022.

[61] Junzhe Wang, Matthew Sharp, Chuxiong Wu, Qiang
Zeng, and Lannan Luo. Can a deep learning model
for one architecture be used for others? retargeted-
architecture binary code analysis. In USENIX Security
Symposium (USENIX Security), 2023.

[62] Xuezhi Wang, Jason Wei, Dale Schuurmans, Quoc Le,
Ed Chi, Sharan Narang, Aakanksha Chowdhery, and
Denny Zhou. Self-consistency improves chain of
thought reasoning in language models. In International
Conference on Learning Representations (ICLR), 2023.

[63] Jason Wei, Xuezhi Wang, Dale Schuurmans, Maarten
Bosma, Fei Xia, Ed Chi, Quoc V Le, Denny Zhou, et al.
Chain-of-thought prompting elicits reasoning in large
language models. In Advances in Neural Information
Processing Systems (NeurIPS), 2023.

[64] Jules White, Quchen Fu, Sam Hays, Michael Sand-
born, Carlos Olea, Henry Gilbert, Ashraf Elnashar, Jesse
Spencer-Smith, and Douglas C Schmidt. A prompt pat-
tern catalog to enhance prompt engineering with chatgpt.
arXiv preprint arXiv:2302.11382, 2023.

[65] Wiki. Matter (standard), 2022. https://en.wikipedia.org
/wiki/Matter_(standard).

[66] Wired. What is matter?, 2023. https://www.wired.com/
story/what-is-matter/.

[67] wireghoul. Doona, 2019. https://github.com/wireghoul
/doona.

[68] Chungiu Steven Xia, Matteo Paltenghi, Jia Le Tian,
Michael Pradel, and Lingming Zhang. Fuzz4all: Uni-
versal fuzzing with large language models. In Proc.
IEEE International Conference on Software Engineer-
ing (ICSE), 2024.

https://github.com/openthread/ot-br-posix
https://github.com/openthread/ot-br-posix
https://peachtech.gitlab.io/peach-fuzzer-community/
https://peachtech.gitlab.io/peach-fuzzer-community/
https://github.com/project-chip/connectedhomeip
https://github.com/project-chip/connectedhomeip
https://pypi.org/project/pytesseract/
https://pypi.org/project/pytesseract/
https://www.schutzwerk.com/en/blog/matter-security-considerations/
https://www.schutzwerk.com/en/blog/matter-security-considerations/
https://www.theverge.com/2023/4/18/23687751/nest-thermostat-matter-support-apple-home
https://www.theverge.com/2023/4/18/23687751/nest-thermostat-matter-support-apple-home
https://www.theverge.com/2023/4/18/23687751/nest-thermostat-matter-support-apple-home
https://www.theverge.com/22787729/matter-smart-home-standard-apple-amazon-google
https://www.theverge.com/22787729/matter-smart-home-standard-apple-amazon-google
https://en.wikipedia.org/wiki/Matter_(standard)
https://en.wikipedia.org/wiki/Matter_(standard)
https://www.wired.com/story/what-is-matter/
https://www.wired.com/story/what-is-matter/
https://github.com/wireghoul/doona
https://github.com/wireghoul/doona

[69]

[70]

[71]

[72]

[73]

[74]

[75]

[76]

[77]

[78]

Jonas Zaddach, Luca Bruno, Aurelien Francillon, and
Davide Balzarotti. AVATAR: a framework to sup-
port dynamic security analysis of embedded systems’
firmwares. In Network and Distributed System Security
Symposium (NDSS), 2014.

JD Zamfirescu-Pereira, Richmond Y Wong, Bjoern Hart-
mann, and Qian Yang. Why Johnny can’t prompt: how
non-Al experts try (and fail) to design LLM prompts. In
Proc. ACM Conference on Human Factors in Computing
Systems (CHI), 2023.

Qiang Zeng, Lannan Luo, Zhiyun Qian, Xiaojiang Du,
and Zhoujun Li. Resilient decentralized android applica-
tion repackaging detection using logic bombs. In Proc.
ACM International Symposium on Code Generation and
Optimization (CGO), 2018.

Qiang Zeng, Lannan Luo, Zhiyun Qian, Xiaojiang Du,
Zhoujun Li, Chin-Tser Huang, and Csilla Farkas. Re-
silient user-side android application repackaging and
tampering detection using cryptographically obfuscated
logic bombs (tdsc). IEEE Transactions on Dependable
and Secure Computing, 18(6):2582-2600, 2021.

Yu Zhang, Nanyu Zhong, Wei You, Yanyan Zou, Kun-
peng Jian, Jiahuan Xu, Jian Sun, Baoxu Liu, and Wei
Huo. NDFuzz: A non-intrusive coverage-guided fuzzing
framework for virtualized network devices. Cybersecu-
rity, 5(1):1-21, 2022.

Yaowen Zheng, Ali Davanian, Heng Yin, Chengyu Song,
Hongsong Zhu, and Limin Sun. FIRM-AFL: High-
throughput greybox fuzzing of IoT firmware via aug-
mented process emulation. In USENIX Security Sympo-
sium (USENIX Security), 2019.

Yaowen Zheng, Yuekang Li, Cen Zhang, Hongsong Zhu,
Yang Liu, and Limin Sun. Efficient greybox fuzzing of
applications in Linux-based IoT devices via enhanced
user-mode emulation. In Proc. ACM SIGSOFT Inter-
national Symposium on Software Testing and Analysis

(ISSTA), 2022.

Wei Zhou, Le Guan, Peng Liu, and Yuqing Zhang. Au-
tomatic firmware emulation through invalidity-guided
knowledge inference. In USENIX Security Symposium
(USENIX Security), 2021.

Wei Zhou, Lan Zhang, Le Guan, Peng Liu, and Yuqing
Zhang. What your firmware tells you is not how you
should emulate it: A specification-guided approach for
firmware emulation. In Proc. ACM Conference on Com-
puter and Communications Security (CCS), 2022.

Lipeng Zhu, Xiaotong Fu, Yao Yao, Yuqing Zhang, and
He Wang. FIoT: Detecting the memory corruption in
lightweight IoT device firmware. In Proc. International

[79]

[80]

A

Conference on Trust, Security and Privacy in Computing
and Communications (TrustCom), 2019.

Xiaogang Zhu, Sheng Wen, Seyit Camtepe, and Yang Xi-
ang. Fuzzing: A survey for roadmap. ACM Computing
Surveys (CSUR), 54(11s):1-36, 2022.

Fei Zuo, Xiaopeng Li, Patrick Young, Lannan Luo,
Qiang Zeng, and Zhexin Zhang. Neural machine transla-
tion inspired binary code similarity comparison beyond
function pairs. In Network and Distributed System Se-
curity Symposium (NDSS), 2019.

Example of an Assembled Prompt

Figure 12 shows the prompt for querying the information of
the Group cluster.

You will be provided with a section of the protocol
specification text about the Groups Cluster. Please provide
responses to the questions in the specified order and format
as outlined in the text provided. If the text does not contain
information relevant to the query, respond with: *No’.

Groups Cluster text:

The Groups cluster manages, per endpoint, the content of
the node-wide Group Table that is part of the underlying
interaction layer. ... The GrouplD field is set to the GroupID
field of the received RemoveGroup command.

Please respond to the questions based on the provided text
of the Groups cluster with the required format. Queries are
as follows:

1. From the "Data Types" section, extract all derived
datatypes and their corresponding value ranges, especially
the datatypes with the suffixes "Enum" and "Struct". Ensure
the return format is a Dictionary similar to the format of the
Example Output.

2. From the "Commands" section, extract all commands,
and for each command, extract the datatype and value range
for each of its arguments. Ensure the return format is a
Dictionary similar to the format of the Example Output.

3. From the "Attributes" section, extract all attributes, and
for each attribute, extract its datatype and value range. En-
sure the return format is a Dictionary similar to the format
of the Example Output.

4. Return a Python list that includes all command IDs.

5. Return a Python list that includes all attribute IDs.

Here is an Example Output in JSON format.

[Example Output].

Figure 12: Assembled prompt for querying the information
of the Groups cluster.

	Introduction
	Related Work
	Large Language Model Assisted Fuzzing
	Fuzzing of IoT Firmware
	Specification-Guided Fuzzing

	Background
	Matter
	Large Language Models

	Overview
	Motivation of Using LLM
	Threat Model
	Limitations of a SOTA IoT Fuzzer
	Goals and Ideas
	System Architecture

	Design of mGPTFuzz
	Learning Functionality of Matter Devices
	Learning Knowledge Base via LLM
	Information Extraction
	FSM Generation

	Fuzzing Policies
	Constructing Test Messages
	Device State Monitor

	Evaluation
	Implementation
	Experimental Setup
	Bug Discovery Results
	Crash Bugs
	Crash Bug in Nanoleaf Lighting Device
	Stateful Crash Bugs in Govee Lighting Device

	Non-Crash Bugs
	Non-Crash Bugs of Type N1 in All Matter Devices
	Stateful Non-Crash Bugs of Type N1
	Non-Crash Bugs of Type N2

	Comparison with Baseline Method
	Efficiency

	Discussion
	Conclusion
	Example of an Assembled Prompt

